Contents

Contributors xxiv
Preface xxxi

Part I Introduction

1 Novel Omics Technologies in Food Nutrition Xuewu Zhang, Lijun You, Wei Wang, and Kaijun Xiao 3
1.1 Introduction 3
1.2 Transcriptomics in Nutritional Research 4
1.3 Proteomics in Nutritional Research 5
1.4 Metabolomics in Nutritional Research 7
1.5 Systems Biology in Nutritional Research 9
1.6 Conclusions 9
References 10

2 Seafood Authentication using Foodomics: Proteomics, Metabolomics, and Genomics Karola Böhme, Jorge Barros-Velázquez, Pilar Calo-Mata, José M. Gallardo, and Ignacio Ortea 14
2.1 Introduction 14
2.2 Proteomic Approaches 15
2.3 Metabolomic Approaches 19
2.4 Genomic Approaches 20
2.5 Conclusions 25
References 26

3 A Foodomics Approach Reveals Hypocholesterolemic Activity of Red Microalgae Irini Dvir, Aliza H. Stark, and Shoshana (Malis) Arad 31
3.1 Introduction 31
3.2 Marine Functional Foods and Supplements 32
3.2.1 Algae as a Functional Food 32
3.2.2 The Nutritional Value of Algae 32
3.3 Microalgae 33
3.3.1 Red Microalgae 34
3.3.2 Sulfated Polysaccharides from Red Microalgae 34
3.3.3 Red Microalgae as a Hypocholesterolemic Agent 35
3.4 Summary 37
References 37

Part II Genomics

4 Gene-Diet Interaction and Weight Management Lu Qi 43
4.1 Introduction 43
4.2 Diet and Lifestyle Modifications in Weight Management 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 The Role of Genetic Factors in Determining Body Weight and Weight Loss</td>
<td>44</td>
</tr>
<tr>
<td>4.4 Gene-Diet Interactions on Body Weight and Risk of Obesity</td>
<td>46</td>
</tr>
<tr>
<td>4.5 Gene-Diet Interactions on Weight Loss in Randomized Clinical Trials</td>
<td>47</td>
</tr>
<tr>
<td>4.6 Gene-Diet Interactions on Weight Maintenance</td>
<td>48</td>
</tr>
<tr>
<td>4.7 Personalized Weight Management through Diet and Lifestyle Modifications</td>
<td>49</td>
</tr>
<tr>
<td>4.8 Summary and Concluding Remarks</td>
<td>50</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>50</td>
</tr>
<tr>
<td>References</td>
<td>50</td>
</tr>
<tr>
<td>5 NutrimiRomics: The Promise of a New Discipline in Nutrigenomics</td>
<td>53</td>
</tr>
<tr>
<td>Amitava Das and Chandan K. Sen</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>53</td>
</tr>
<tr>
<td>5.2 miRomics: A New Cornerstone</td>
<td>56</td>
</tr>
<tr>
<td>5.3 Nutrigenomics and miR</td>
<td>57</td>
</tr>
<tr>
<td>References</td>
<td>58</td>
</tr>
<tr>
<td>6 Genomics as a Tool to Characterize Anti-inflammatory Nutraceuticals</td>
<td>61</td>
</tr>
<tr>
<td>Amitava Das, Scott Chaffee, and Sashwati Roy</td>
<td></td>
</tr>
<tr>
<td>6.1 Chronic Inflammation in Disease</td>
<td>61</td>
</tr>
<tr>
<td>6.1.1 Vascular Disorders</td>
<td>61</td>
</tr>
<tr>
<td>6.1.2 Respiratory Disorders</td>
<td>62</td>
</tr>
<tr>
<td>6.1.3 Gastrointestinal Tract</td>
<td>62</td>
</tr>
<tr>
<td>6.1.4 Neurodegenerative Diseases</td>
<td>63</td>
</tr>
<tr>
<td>6.1.5 Cancer</td>
<td>63</td>
</tr>
<tr>
<td>6.1.6 Rheumatic Diseases</td>
<td>63</td>
</tr>
<tr>
<td>6.2 Nutraceuticals in the Management of Chronic Inflammation</td>
<td>64</td>
</tr>
<tr>
<td>6.3 GeneChip™ as a Tool to Characterize the Anti-Inflammatory Properties of Nutraceuticals</td>
<td>65</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>7 Nutrigenomics, Inflammaging, and Osteoarthritis: A Review</td>
<td>71</td>
</tr>
<tr>
<td>Ali Mobasherri, Richard Barrett-Jolley, Caroline A. Staunton, Chris Ford, and Yves Henrotin</td>
<td></td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>71</td>
</tr>
<tr>
<td>7.2 Osteoarthritis (OA)</td>
<td>72</td>
</tr>
<tr>
<td>7.3 Antioxidants and the Inflammatory Microenvironment</td>
<td>73</td>
</tr>
<tr>
<td>7.4 Inflammaging</td>
<td>75</td>
</tr>
<tr>
<td>7.5 Nutrigenomics</td>
<td>76</td>
</tr>
<tr>
<td>7.6 Muscle Inflammation in OA</td>
<td>77</td>
</tr>
<tr>
<td>7.7 Conclusions</td>
<td>80</td>
</tr>
<tr>
<td>Acknowledgments, Competing Interests, and Disclosures</td>
<td>80</td>
</tr>
<tr>
<td>References</td>
<td>80</td>
</tr>
<tr>
<td>8 Genetic Basis of Anti-Inflammatory Properties of Boswellia Extracts</td>
<td>85</td>
</tr>
<tr>
<td>Golakoti Trimurtulu, Chandan K. Sen, Alluri V. Krishnaraju, Kiran Bhupathiraju, and Krishanu Sengupta</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>8.2 Boswellia serrata</td>
<td>86</td>
</tr>
<tr>
<td>8.3 Mechanism of Action</td>
<td>87</td>
</tr>
<tr>
<td>8.4 Development of 5-LOXIN® (BE-30)</td>
<td>87</td>
</tr>
<tr>
<td>8.4.1 Genetic Basis for Efficacy of 5-LOXIN® (BE-30)</td>
<td>88</td>
</tr>
<tr>
<td>8.5 Gene Chip Probe Array Analysis</td>
<td>88</td>
</tr>
<tr>
<td>8.6 Proteomics</td>
<td>89</td>
</tr>
<tr>
<td>8.7 Molecular Basis of Anti-Inflammatory Properties of 5-LOXIN®</td>
<td>95</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>In vivo Studies</td>
</tr>
<tr>
<td>8.9</td>
<td>Safety of 5-LOXIN®</td>
</tr>
<tr>
<td>8.10</td>
<td>Clinical Efficacy of 5-LOXIN® in the Management of Osteoarthritis</td>
</tr>
<tr>
<td>8.11</td>
<td>An Advanced 5-LOXIN®: Aflapin®</td>
</tr>
<tr>
<td>8.12</td>
<td>Conclusion</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Cancer Chemopreventive Phytochemicals Targeting NF-κB and Nrf2 Signaling Pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>9.2</td>
<td>Molecular-Based Cancer Chemoprevention</td>
</tr>
<tr>
<td>9.3</td>
<td>Nuclear Factor-Kappa B (NF-κB)</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Curcumin</td>
</tr>
<tr>
<td>9.3.2</td>
<td>[6]-Gingerol</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Capsaicin</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Resveratrol</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Quercetin</td>
</tr>
<tr>
<td>9.3.6</td>
<td>Sulforaphane</td>
</tr>
<tr>
<td>9.3.7</td>
<td>Genistein</td>
</tr>
<tr>
<td>9.4</td>
<td>Nrf2</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Sulforaphane</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Curcuminoids</td>
</tr>
<tr>
<td>9.4.3</td>
<td>EGCG</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Allyl Sulfides</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Resveratrol</td>
</tr>
<tr>
<td>9.4.6</td>
<td>Pungent Vanilloids</td>
</tr>
<tr>
<td>9.4.7</td>
<td>Lycopene</td>
</tr>
<tr>
<td>9.4.8</td>
<td>Coffee-Derived Diterpenes</td>
</tr>
<tr>
<td>9.4.9</td>
<td>Carnosol</td>
</tr>
<tr>
<td>9.4.10</td>
<td>Xanthohumol</td>
</tr>
<tr>
<td>9.4.11</td>
<td>Zerumbone</td>
</tr>
<tr>
<td>9.4.12</td>
<td>Chalcones</td>
</tr>
<tr>
<td>9.5</td>
<td>Interplay/Crosstalk between Nrf2 and NF-κB Signaling Pathways</td>
</tr>
<tr>
<td>9.6</td>
<td>Conclusion</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>The Beneficial Health Effects of Fucoxanthin</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.2</td>
<td>The Beneficial Health Effects of Carotenoids as Antioxidants</td>
</tr>
<tr>
<td>10.3</td>
<td>Anticancer Activity of Fucoxanthin</td>
</tr>
<tr>
<td>10.4</td>
<td>Anti-Obesity Effects of Fucoxanthin</td>
</tr>
<tr>
<td>10.5</td>
<td>Anti-Diabetic Effects of Fucoxanthin</td>
</tr>
<tr>
<td>10.6</td>
<td>Conclusion</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Nutrition, Genomics, and Human Health: A Complex Mechanism for Wellness</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>Nutrition Sciences and Clinical Applications in Nutritional Genomics</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

96
96
97
99
100
100
102
102
104
105
106
107
107
107
108
108
108
108
108
109
111
111
111
112
112
112
112
113
113
113
113
114
114
115
116
116
122
122
124
124
126
127
130
131
135
135
136
139
14.4.2 High Throughput Phenotyping	168
14.4.3 High Throughput Marker Genotyping	168
14.4.4 Identification and Mapping of QTLs/Genes	168
14.4.5 Trait Association Mapping	170
14.5 Genomics-Assisted Crop Improvement	170
References	175

15 Combinatorial Approaches Utilizing Nutraceuticals in Cancer Chemoprevention and Therapy: A Complementary Shift with Promising Acuity

Madhulika Singh and Yogeshwer Shukla

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>15.2 Nutraceuticals</td>
<td>187</td>
</tr>
<tr>
<td>15.3 Nutraceuticals and Key Events in Cancer Development</td>
<td>189</td>
</tr>
<tr>
<td>15.3.1 Inflammation</td>
<td>189</td>
</tr>
<tr>
<td>15.3.2 Oxidative Stress</td>
<td>190</td>
</tr>
<tr>
<td>15.3.3 Antiproliferation</td>
<td>190</td>
</tr>
<tr>
<td>15.3.4 Cell-Cycle Arrest</td>
<td>190</td>
</tr>
<tr>
<td>15.3.5 Apoptosis</td>
<td>190</td>
</tr>
<tr>
<td>15.3.6 Transforming Growth Factor-β (TGF-β)/Smad Signaling Pathway</td>
<td>191</td>
</tr>
<tr>
<td>15.3.7 β-Catenin</td>
<td>191</td>
</tr>
<tr>
<td>15.4 Nutraceuticals in Combinatorial Therapy of Human Cancer: A Pledge of the Future</td>
<td>191</td>
</tr>
<tr>
<td>15.4.1 Nutraceuticals in Cruciferous Vegetables: Potential for Combination Therapy</td>
<td>191</td>
</tr>
<tr>
<td>15.4.2 Indole-3-Carbinol (I3C) and Combinations</td>
<td>192</td>
</tr>
<tr>
<td>15.4.3 Phenethylisothiocyanate (PEITC) and Combinations</td>
<td>192</td>
</tr>
<tr>
<td>15.4.4 Sulforaphane (SFN) and Combinations</td>
<td>193</td>
</tr>
<tr>
<td>15.4.5 Synergism among Cruciferous Compounds</td>
<td>194</td>
</tr>
<tr>
<td>15.4.6 Combinations of Cruciferous Compounds with Conventional Cancer Chemotherapeutics</td>
<td>194</td>
</tr>
<tr>
<td>15.5 Curcumin: Potential for Combination Therapy</td>
<td>195</td>
</tr>
<tr>
<td>15.5.1 Curcumin with Xanthorrhizol</td>
<td>195</td>
</tr>
<tr>
<td>15.5.2 Curcumin with Docosahexaenoic Acid (DHA, Polyunsaturated Fatty Acids Present in Fish Oil)</td>
<td>196</td>
</tr>
<tr>
<td>15.5.3 Curcumin and Genistein</td>
<td>196</td>
</tr>
<tr>
<td>15.5.4 Curcumin and Resveratrol</td>
<td>197</td>
</tr>
<tr>
<td>15.5.5 Curcumin and EGCG</td>
<td>197</td>
</tr>
<tr>
<td>15.5.6 Curcumin and Citrus Limonoids</td>
<td>197</td>
</tr>
<tr>
<td>15.5.7 Curcumin with Apigenin</td>
<td>197</td>
</tr>
<tr>
<td>15.5.8 Curcumin and Triptolide</td>
<td>198</td>
</tr>
<tr>
<td>15.5.9 Combinations of Curcumin with Conventional Cancer Chemotherapeutics</td>
<td>198</td>
</tr>
<tr>
<td>15.6 Resveratrol: Potential for Combination Therapy</td>
<td>199</td>
</tr>
<tr>
<td>15.6.1 Resveratrol and Genistein</td>
<td>199</td>
</tr>
<tr>
<td>15.6.2 Resveratrol and Piperine</td>
<td>200</td>
</tr>
<tr>
<td>15.6.3 Resveratrol and Black Tea Polyphenols</td>
<td>200</td>
</tr>
<tr>
<td>15.6.4 Resveratrol and Melatonin</td>
<td>200</td>
</tr>
<tr>
<td>15.6.5 Synergism among Resveratrol and Other Grapes’ Polyphenols</td>
<td>200</td>
</tr>
<tr>
<td>15.6.6 Resveratrol in Combination with Anticancer Drugs</td>
<td>201</td>
</tr>
<tr>
<td>15.7 Lycopene (a Carotenoid): Potential for Combinations Therapy</td>
<td>202</td>
</tr>
<tr>
<td>15.7.1 Lycopene and Genistein</td>
<td>202</td>
</tr>
<tr>
<td>15.7.2 Lycopene and Se-allyl Cysteine</td>
<td>202</td>
</tr>
<tr>
<td>15.7.3 Lycopene and 1,25-Dihydroxyvitamin D3</td>
<td>202</td>
</tr>
<tr>
<td>15.7.4 Lycopene with Selenium</td>
<td>203</td>
</tr>
<tr>
<td>15.7.5 Lycopene and FruHis (Ketosamine)</td>
<td>203</td>
</tr>
<tr>
<td>15.7.6 Combination of Lycopene with Cancer Chemotherapeutic Drugs</td>
<td>203</td>
</tr>
<tr>
<td>15.8 Soy Nutraceuticals: Potential for Combination Therapy</td>
<td>203</td>
</tr>
<tr>
<td>15.8.1 Genistein and Daidzein</td>
<td>203</td>
</tr>
</tbody>
</table>
15.8.2 Genistein and 3,3’-Diindolylmethane
15.8.3 Genistein and Capsaicin
15.8.4 Combination of Genistein with Conventional Cancer Chemotherapeutics
15.9 Tea Polyphenols Potential for Combinatorial Therapy
15.9.1 Green Tea and Quercetin
15.9.2 EGCG and Soy Phytochemical
15.9.3 EGCG and Thymoquinone
15.9.4 EGCG and Trichostatin A
15.9.5 EGCG and Luteolin
15.9.6 EGCG and Pterostilbene (a Stilbenoid Derived from Blueberries)
15.9.7 EGCG and Panaxadiol
15.9.8 Polyphenon E
15.9.9 EGCG with Conventional Cancer Chemotherapy
15.10 D-Limonene: Potential for Combination Therapy
15.10.1 D-Limonene and Chemotherapeutic Drugs
15.11 Miscellaneous: Novel Nutraceuticals Formulation
15.11.1 Collect: A Dietary Supplement
15.11.2 BreastDefend: A Natural Dietary Supplement
15.11.3 ProstaCaid: A Dietary Supplement
15.12 Conclusion

References

16 Nutrigenomic Approaches to Understanding the Transcriptional and Metabolic Responses of Phytochemicals to Diet-Induced Obesity and its Complications
Myung-Sook Choi and Eun-Young Kwon

16.1 Introduction
16.2 Nutrigenomics
16.2.1 Tools for Bioinformatics and Systems Biology
16.3 Obesity and Cardiometabolic Syndrome
16.3.1 Obesity
16.3.2 Inflammation and Insulin Resistance in Obesity
16.3.3 Obesity and Cardiometabolic Syndrome: A Possible Role for Nutrigenomics
16.4 Anti-Obesity Action of Luteolin
16.5 Conclusion
Acknowledgments
References

17 Going Beyond the Current Native Nutritional Food Through the Integration of the Omic Data in the Post-Genomic Era: A Study in (Resistant) Starch Systems Biology
Treenut Saithong and Saowalak Kalapanulak

17.1 Introduction
17.2 Starch and its Yield Improvement in Plants
17.3 An Extension of the (Resistant) Starch Yield Improvement Research on the Systems Biology Regime: Integration of the Omic Data from the Post-Genomic Technology
References

Part III Proteomics

18 Proteomics and Nutrition Research: An Overview
Arun K. Tewari, Sudhasri Mohanty, and Sashwati Roy

18.1 Introduction
18.2 Proteomics
18.2.1 Proteomics Tools and Technologies
19 Proteomics Analysis for the Functionality of Toona sinensis
Sue-Jean Chang and Chun-Yung Huang

19.1 Introduction

19.2 Toona sinensis
 19.2.1 Functions of Toona sinensis Leaf Extracts (TSLs)
 19.2.2 Preparation of TSLs

19.3 TSLs Regulate Functions of Testes/Spermatocytes
 19.3.1 TSL-2 Exhibits Pro-oxidants but Protects Germ Cells from Apoptosis
 19.3.2 TSL-2P Exhibits Prooxidant Properties and Impairs Sperm Maturation
 19.3.3 TSL-6 Exhibits Antioxidant Properties and Enhances Sperm Functions

19.4 TSLs Regulate Liver Metabolism
 19.4.1 TSL-CE Decreases Gluconeogenesis
 19.4.2 TSL-CE Enhances Lipolysis
 19.4.3 TSL-CE Decreases Glutamate Metabolism
 19.4.4 TSL-CE Alleviates Oxidative Stress
 19.4.5 TSL-CE Increases Protein Kinase C –λ
 19.4.6 TSL-CE Activates the PPARα/γ Pathway
 19.4.7 TSL-CE Inhibits the Polyol Pathway

19.5 TSL as a Novel Antioxidant

19.6 Possible Active Compounds in TSL Extracts

19.7 Conclusion

References

20 Proteomic Approaches to Identify Novel Therapeutics and Nutraceuticals from Filamentous Fungi: Prospects and Challenges
Samudra Prosad Banik, Suman Khowala, Chiranjib Pal, and Soumya Mukherjee

20.1 Introduction

20.2 Mushroom Derived Immunomodulators and their Target Cells in the Immune System
 20.2.1 Macrophages
 20.2.2 Dendritic Cells
 20.2.3 NK Cells

20.3 Mushroom Derived Metabolites in Treating Cancer

20.4 Mushroom Derived Metabolites in Infectious Diseases

20.5 Fungal Enzymes as Therapeutics and Dietary Supplements

20.6 Identification and Characterization of Mushroom Derived Bioactive Therapeutics
 20.6.1 Proteomic Methodologies for Characterization of Fungal Complexes

20.7 Challenges in Intracellular Proteome Preparation
21 Proteomics and Metaproteomics for Studying Probiotic Activity
Rosa Anna Siciliano and Maria Fiorella Mazzeo

21.1 Introduction
21.2 Molecular Mechanisms of Probiotic Action as Studied by Proteomics
 21.2.1 Adaptation Mechanisms to GIT Environment
 21.2.2 Adhesion Mechanisms to the Host Mucosa
 21.2.3 Molecular Mechanisms of Probiotic Immunomodulatory Effects
21.3 Probiotics and Prebiotics
21.4 Investigation on Human Microbiota Dynamics by Proteomics
21.5 Concluding Remarks and Future Directions

References

301

22 Proteomics Approach to Assess the Potency of Dietary Grape Seed Proanthocyanidins and Dimeric Procyanidin B2
Hai-qing Gao, Bao-ying Li, Mei Cheng, Xiao-li Li, Fei Yu, and Zhen Zhang

22.1 Chemoprotective Properties of GSPs
 22.1.1 Components and Molecules
 22.1.2 Antioxidant Effects
 22.1.3 Anti-Nonenzymatic Glycation and Anti-Inflammation Effects
 22.1.4 Protective Effects on the Cardiovascular System
 22.1.5 Protective Effects on Diabetes and its Complications
 22.1.6 Anti-Aging Effects
 22.1.7 Anti-Oncogenesis Effects
 22.1.8 Effect on Wound Healing
 22.1.9 Anti-Osteoporosis
22.2 Proteomic Platform
 22.2.1 Based on Two-Dimensional Gel Electrophoresis (2-DE) Proteomics
 22.2.2 “Gel-Free” Proteomics
 22.2.3 Protein Chips
22.3 Proteomics Analysis of the Actions of GSPs
 22.3.1 Proteomics Analysis of the Actions of GSP in the Brain of Normal Rats
 22.3.2 Proteomics Analysis of the Actions of GSP in Rats with Diabetic Nephropathy
 22.3.3 Proteomics Analysis of the Actions of GSPB2 in the Aorta of db/db Mice
 22.3.4 Proteomics Analysis of the Actions of GSPB2 in the Kidneys of db/db Mice
22.4 Functional Confirmation of Proteins

317
23 Genomic and Proteomic Approaches to Lung Transplantation: Identifying Relevant Biomarkers to Improve Surgical Outcome

John Noel, Ronald Carmelona, and Shampa Chatterjee

23.1 Introduction
23.2 Lung Transplantation
 23.2.1 A Case of Ischemia-Reperfusion (I/R)
 23.2.2 The I/R Signaling Cascade
23.3 Challenges of Lung Transplantation
 23.3.1 Oxidative Damage and Bronchiolitis Obliterans Syndrome
 23.3.2 Oxidative Damage and Inflammation
23.4 Inflammatory Biomarkers with Lung Rejection: Markers of Inflammation Signaling such as CAMs, Chemokines, and Cytokines and their Status with Transplants
 23.4.1 Proinflammatory Cytokines and Chemokines
 23.4.2 Cellular Adhesion Molecules
23.5 Microarray Technology to Identify Transplant Rejection Biomarkers
23.6 Challenges and Future Directions

References

24 Proteomics in Understanding the Molecular Basis of Phytochemicals for Health

Jung Yeon Kwon, Sanguine Byun, and Ki Won Lee

24.1 Introduction
24.2 Proteomics in Phytochemical Research in Cancer Prevention
 24.2.1 Genistein
 24.2.2 Curcumin
 24.2.3 Sulforaphane and β-Phenylethyl Isothiocyanate
 24.2.4 Apigenin 7-Glucoside
 24.2.5 Quercetin
24.3 Perspectives
24.4 Proteomics in Phytochemical Research for Metabolic Diseases
24.5 Proteomics for Neuroprotective Phytochemicals
24.6 Proteomics for Phytochemicals with Other Functions for Health Benefits
24.7 Conclusions

References

25 Genomics/Proteomics of NEXT-II®, a Novel Water-Soluble, Undenatured Type II Collagen in Joint Health Care

Orie Yoshinari, Hiroyoshi Moriyama, Manashi Bagchi, and Debasis Bagchi

25.1 Introduction
25.2 Mechanism of RA
25.3 About NEXT-II®
 25.3.1 Preparation of NEXT-II®
 25.3.2 Safety of NEXT-II®
 25.3.3 Efficacy of NEXT-II® in Collagen-Induced Arthritic Mice
25.4 Hypothesized Mechanism of NEXT-II®
25.5 Future Perspectives
25.6 Conclusion

References
Part IV Metabolomics 347

26 Harnessing Metabolic Diversity for Nutraceutical Plant Breeding 349
Ashish Saxena and Vicki L. Schlegel

26.1 What is Metabolomics? 349
26.2 Nutraceuticals 350
26.3 Importance of Secondary Metabolites 350
26.4 Complementing Plant Breeding with “Omics” 351
26.5 Nutraceutical Breeding 352
26.6 Crop Quality 353
26.7 Metabolomics and Plant Stresses 353
26.8 Food Safety 354
26.9 Future 354
References 354

27 Metabolomics and Fetal-Neonatal Nutrition: An Overview 357
Angelica Dessì, Flaminia Cesare Marincola, and Vassilios Fanou

27.1 Introduction 357
27.2 IUGR and LGA: Fetal Programming 358
27.3 Metabolomics in Nutritional Research 358
27.4 Nutrimetabolomics in Animal Models 360
27.5 Nutrimetabolomics in Human Models 361
27.6 Conclusions 362
References 363

28 Metabolomics, Bioactives, and Cancer 365
Shannon R. Sweeney, John DiGiovanni, and Stefano Tiziani

28.1 Introduction 365
28.2 Nuclear Magnetic Resonance Spectroscopy 366
28.3 Mass Spectrometry 367
28.4 Application of Scientific Computing and Data Analysis 368
28.5 Metabolomics, Bioactive Food Components, and Cancer 369
 28.5.1 Resveratrol 370
 28.5.2 Epigallocatechin Gallate 370
 28.5.3 Curcumin 372
 28.5.4 Ursolic Acid 372
 28.5.5 Omega-3 Fatty Acids 373
28.6 Future Perspectives 373
References 374

29 NMR-Based Metabolomics of Foods 379
Takuya Miyakawa, Tingfu Liang, and Masaru Tanokura

29.1 Introduction 379
29.2 Principal Aspects of NMR in Food Analyses 380
29.3 NMR Techniques Applied to Food Metabolomics 380
29.4 Monitoring of Metabolic Changes in Food Processing Using Quantitative NMR 381
29.5 NMR Profiling Based on Multivariate Analyses 382
 29.5.1 Food Quality and Safety 383
 29.5.2 Sensory Assessment for Food Development 384
 29.5.3 Food Functionality and Identification of Bioactive Metabolites 385
29.6 Conclusion
Acknowledgments
References

30 Cancer Chemopreventive Effect of Curcumin through Suppressing
Metabolic Crosstalk between Components in the Tumor Microenvironment
Dong Hoon Suh and Yong-Sang Song

30.1 Introduction
30.2 Cancer Metabolism
 30.2.1 The Warburg and Reverse Warburg Effect
 30.2.2 Paradigm Shift from Cancer Cells to Cancer Microenvironment
 30.2.3 Cancer-Associated Cells in the Tumor Microenvironment
30.3 Metabolic Onco-Targets of Curcumin in the Tumor Microenvironment
 30.3.1 Xenohormetic Inhibition of NF-κB
30.4 Clinical Trials of Curcumin as Metabolic Modulators in Cancer
30.5 Conclusions and Future Perspectives
Acknowledgments
References

31 Metabolomics of Green Tea
Yoshinori Fujimura and Hirofumi Tachibana

31.1 Introduction
31.2 Metabolic Profiling
31.3 Tea Chemical Composition
31.4 Metabolic Responses to Tea Consumption
31.5 Biotransformation of Dietary Tea Components
31.6 Conclusion
Acknowledgments
References

Part V Epigenetics

32 The Potential Epigenetic Modulation of Diabetes Influenced by Nutritional Exposures In Utero
Jie Yan and Huixia Yang

32.1 Introduction
32.2 Insulin Resistance
32.3 Skeletal Muscle
32.4 Type 2 Diabetes
32.5 Influence of High-Fat Diet
32.6 Obesity
32.7 Intrauterine Growth Restriction (IUGR)
32.8 Environmental Factors and Epigenetic Modifications
32.9 Mitochondria and Energy Homeostasis
32.10 Diabetes Progression
32.11 Conclusion
References

33 The Time has Come (and the Tools are Available) for Nutriepigenomics Studies
Pearly S. Yan

33.1 Introduction: Great Strides in Deciphering Methyloomes
33.2 Recent Findings in Methyolome Research and their Implications for Future Nutriepigenomic Research
33.2.1 Cohort Size and Data Reproducibility 419
33.2.2 Proxy/Surrogate Tissues 419
33.2.3 Confounders of Methylome Profiles 419
33.3 Strategies for Identifying and Optimizing a Small Number of Promising Methylation Markers 419
33.3.1 Methylome Profiling Protocols 420
33.3.2 Integrating Transcriptional Information 420
33.3.3 Genetic-Associated Epigenetic Changes 420
33.3.4 Other Approaches to Identify Functional Markers 420
33.4 Validation of Methylation Markers Performance in Large Cohorts using Highly Targeted Assays 421
33.4.1 Validation Using Methylation-Based Assays 421
33.4.2 Validation Using Gene Expression-Based Sequencing Panels as Readouts for Functional Methylation Markers 422
33.5 Summaries 422
References 422

34 Natural Phytochemicals as Epigenetic Modulators 424
Gauri Deb and Sanjay Gupta

34.1 Introduction 424
34.2 Epigenetic Mechanisms in Mammals 425
34.2.1 DNA Methylation 425
34.2.2 Histone Modifications 426
34.2.3 Non-Coding RNAs 426
34.3 Natural Phytochemicals and Epigenetic Mechanisms 427
34.3.1 Apigenin 427
34.3.2 Curcumin 427
34.3.3 (-)-Epigallocatechin-3-Gallate (EGCG) 428
34.3.4 Genistein and Soy Isoflavones 428
34.3.5 Indole-3-Carbinol and Diindolylmethane 429
34.3.6 Lycopene 430
34.3.7 Organosulfur Compounds 430
34.3.8 Phenethyl Isothiocyanate (PEITC) 431
34.3.9 Quercetin 431
34.3.10 Resveratrol 432
34.3.11 Sulforaphane 433
34.4 Conclusion and Future Perspectives 433
Acknowledgments 433
References 433

Part VI Peptidomics

35 Detection and Identification of Food-Derived Peptides in Human Blood: 441
Food-Derived Short Chain Peptidomics in Human Blood
Kenji Sato and Daisuke Urado

35.1 Introduction 441
35.2 Detection of Apparent Bioactive Peptides in Human Blood 441
35.3 Identification of Food-Derived Peptides in Human Blood 441
35.3.1 Identification of Food-Derived Peptides as Intact Forms 444
35.3.2 Isolation of Phenyl Thiocarbamyl Peptide for Sequence Analysis Based on Edman Degradation 446
35.3.3 MS/MS Analyses of Derivatized Peptides 448
35.4 Future Prospects 448
References 451
Part VII Nutrigenomics and Human Health

36 Use of Omics Approaches for Developing Immune-Modulatory and Anti-Inflammatory Phytomedicines

Shu-Yi Yin, Pradeep M. S., and Ning-Sun Yang

36.1 Introduction

36.1.1 Needs and Importance of Systems Biology and Bioinformatics
36.1.2 Omics Technologies
36.1.3 Phytomics

36.2 Transcriptomics Study in Medicinal Plant Research

36.2.1 Application of DNA Microarrays in Toxicogenomics, Pharmacogenomics, and Functional Genomics Studies of Bioactivity from Medicinal Plants
36.2.2 Immuno-Modulatory Effects of Different Phyto-Compounds/Candidate Phytomedicines
36.2.3 Use of cDNA Microarray/Expression Sequence Tags (ESTs) for Evaluating Bioactivities of Medicinal Plants
36.2.4 Immuno-Modulatory Effects of Traditional Herbal Medicines Revealed by microRNA Analysis

36.3 Proteomics Studies on Research into Medicinal Plants

36.3.1 Use and Advancement of Analytical and Instrumentation Systems: Two-Dimensional Gel Electrophoresis (2-DE), Electrospray Ionization, Matrix-Assisted Laser Desorption/Ionization and Surface-Enhanced Laser Desorption
36.3.2 Application of Proteomics for Research into Traditional Herbal Medicine

36.4 Metabolomics Study on the Research of Medicinal Plants

36.4.1 Use of GC-MS, LC-MS, FT-IR, and NMR Technologies
36.4.2 Metabolomics Research in Medicinal Chemistry Studies
36.4.3 Metabolomics Approach Applied to Research into Immunomodulatory Effects of Phytomedicine

36.5 Lipidomics Study on the Research of Medicinal Plants

36.6 Comparative and Bioinformatics Tools for Omics Studies

36.6.1 Ingenuity
36.6.2 Metacore™
36.6.3 TRANSPATH
36.6.4 KEGG

36.7 Challenges and Perspectives

References

37 The Application of Algae for Cosmeceuticals in the Omics Age

Nyuk Ling Ma, Su Shiang Lam, and Rahman Zaidah

37.1 Introduction

37.2 Metabolomics

37.3 Genomics

37.4 Proteomics

37.5 Conclusion

References

38 Gut Microbiome and Functional Foods: Health Benefits and Safety Challenges

Abhul Kumar, Smita Singh, and Anil Kumar Chauhan

38.1 Introduction

38.2 Microbiome Symbiosis

38.2.1 Diarrhea (Infectious and Antibiotic Associated)
38.2.2 Lactose Intolerance
38.2.3 Inflammatory Intestinal Diseases
38.2.4 Immune Modulation
38.3 Functional Food Intervention of Gut Microbiota
38.4 Types of Functional Foods and Their Effects
 38.4.1 Probiotics and Prebiotics
 38.4.2 Proteins and Peptides
 38.4.3 Carbohydrates and Fibers
 38.4.4 Lipids and Fatty Acids
 38.4.5 Flavonoids and Lycopene
 38.4.6 Vitamins
38.5 Regulations and Safety of Functional Food
38.6 Safety Challenges of Functional Food
38.7 Functional Foods and Nutrigenomics
38.8 Conclusions
Acknowledgment
Conflict of Interest
References

39 An Overview on Germinated Brown Rice and its Nutrigenomic Implications
Mustapha Umar Imam and Maznah Ismail

39.1 Diet and Health: The Role of Staple Foods and Nutrigenomic Implications
39.2 Health Implications of White Rice and Brown Rice Consumption
39.3 Germinated Brown Rice: Bioactives, Functional Effects, and Mechanistic Insights
 39.3.1 Nutrigenomic Effects of Germinated Brown Rice on Obesity and Cholesterol Metabolism
 39.3.2 Nutrigenomic Effects of Germinated Brown Rice on Oxidative Stress
 39.3.3 Nutrigenomic Effects of Germinated Brown Rice on Glycemic Control
 39.3.4 Nutrigenomic Effects of Germinated Brown Rice on Menopause-Related Problems
39.4 Conclusions
39.5 Future Considerations
Acknowledgments
Conflict of Interest
References

40 Novel Chromium (III) Supplements and Nutrigenomics Exploration: A Review
Sreejayan Nair, Anand Swaroop, and Debasis Bagchi

40.1 Introduction
40.2 Trivalent Chromium, Insulin Regulation, and Signaling
40.3 Regulatory Pathways
40.4 MicroRNAs
40.5 Summary and Conclusions
References

Part VIII Transcriptomics

41 Transcriptomics of Plants Interacting with Pathogens and Beneficial Microbes
Hooman Mirzaee, Louise Shuey, and Peer M. Schenk

41.1 Introduction
41.2 Plant Defense Responses against Pathogens
41.3 Transcriptomics during Plant-Pathogen Interactions
41.4 Plant Responses during Interactions with Beneficial Microbes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.5</td>
<td>Transcriptomics during Beneficial Plant-Microbe Interactions</td>
<td>531</td>
</tr>
<tr>
<td>41.6</td>
<td>Knowledge on Modulation of Host Immunity by Pathogens and Beneficial Microbes May Lead to New Resistance Strategies</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>532</td>
</tr>
<tr>
<td>42</td>
<td>Transcriptomic and Metabolomic Profiling of Chicken Adipose Tissue: An Overview</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>Brynn H. Voy, Stephen Dearth, and Shawn R. Campagna</td>
<td></td>
</tr>
<tr>
<td>42.1</td>
<td>Introduction</td>
<td>537</td>
</tr>
<tr>
<td>42.2</td>
<td>Chicken as a Model Organism</td>
<td>537</td>
</tr>
<tr>
<td>42.3</td>
<td>Chicken Genome and Genetic Diversity</td>
<td>538</td>
</tr>
<tr>
<td>42.4</td>
<td>Chicken as a Model for Studies of Adipose Biology and Obesity</td>
<td>538</td>
</tr>
<tr>
<td>42.5</td>
<td>Natural and Selected Models of Differential Fatness</td>
<td>538</td>
</tr>
<tr>
<td>42.5.1</td>
<td>Broilers</td>
<td>538</td>
</tr>
<tr>
<td>42.5.2</td>
<td>Selected Lines</td>
<td>539</td>
</tr>
<tr>
<td>42.6</td>
<td>Transcriptomics and Metabolomics as Tools for the Studies of Adipose Biology in Chicken</td>
<td>539</td>
</tr>
<tr>
<td>42.7</td>
<td>Insight into Control of Adipose Tissue Growth and Metabolism in Chickens from Transcriptomics and Metabolomics</td>
<td>541</td>
</tr>
<tr>
<td>42.8</td>
<td>Conclusions and Future Directions</td>
<td>543</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>543</td>
</tr>
<tr>
<td>43</td>
<td>Nutritional Transcriptomics: An Overview</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td>M. R. Noori-Daloi and A. Nejatizadeh</td>
<td></td>
</tr>
<tr>
<td>43.1</td>
<td>Introduction</td>
<td>545</td>
</tr>
<tr>
<td>43.2</td>
<td>Molecular Nutrition</td>
<td>546</td>
</tr>
<tr>
<td>43.3</td>
<td>From Nutrients to Genes Expression Profiling</td>
<td>547</td>
</tr>
<tr>
<td>43.4</td>
<td>Biological Actions of Nutrients</td>
<td>548</td>
</tr>
<tr>
<td>43.5</td>
<td>Nutritional Transcriptomics</td>
<td>548</td>
</tr>
<tr>
<td>43.6</td>
<td>Transcriptomic Technologies</td>
<td>549</td>
</tr>
<tr>
<td>43.7</td>
<td>Transcriptomics and Development of New Nutritional Biomarkers</td>
<td>552</td>
</tr>
<tr>
<td>43.8</td>
<td>The Micronutrient Genomics Project</td>
<td>553</td>
</tr>
<tr>
<td>43.9</td>
<td>Transcriptomics in Nutrition Research</td>
<td>553</td>
</tr>
<tr>
<td>43.10</td>
<td>Perspectives</td>
<td>554</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>555</td>
</tr>
<tr>
<td>44</td>
<td>Dissecting Transcriptomes of Cyanobacteria for Novel Metabolite Production</td>
<td>557</td>
</tr>
<tr>
<td></td>
<td>Sucheta Tripathy, Deeksha Singh, Mathumalar C., and Abhishek Das</td>
<td></td>
</tr>
<tr>
<td>44.1</td>
<td>Introduction</td>
<td>557</td>
</tr>
<tr>
<td>44.2</td>
<td>Phylogenetic Relationships in Cyanobacteria</td>
<td>558</td>
</tr>
<tr>
<td>44.3</td>
<td>Genomic Studies of Cyanobacteria</td>
<td>560</td>
</tr>
<tr>
<td>44.4</td>
<td>Plasmids in Cyanobacteria</td>
<td>562</td>
</tr>
<tr>
<td>44.5</td>
<td>Dissecting Transcriptomes of Cyanobacteria</td>
<td>563</td>
</tr>
<tr>
<td>44.5.1</td>
<td>Biofuel Production</td>
<td>563</td>
</tr>
<tr>
<td>44.5.2</td>
<td>Novel Metabolite Producing Genes in Cyanobacteria</td>
<td>571</td>
</tr>
<tr>
<td>44.6</td>
<td>Conclusion</td>
<td>571</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>571</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>571</td>
</tr>
<tr>
<td>45</td>
<td>Inflammation, Nutrition, and Transcriptomics</td>
<td>573</td>
</tr>
<tr>
<td></td>
<td>Gareth Marlow and Lynnette R. Ferguson</td>
<td></td>
</tr>
<tr>
<td>45.1</td>
<td>Introduction</td>
<td>573</td>
</tr>
<tr>
<td>45.2</td>
<td>Inflammation</td>
<td>573</td>
</tr>
</tbody>
</table>
46 Transcriptomics and Nutrition in Mammalians
Carmen Arnal, Jose M. Lou-Bonafonte, María V. Martínez-Gracia, María J. Rodríguez-Yoldi, and Jesús Osada

46.1 Introduction
46.1.1 DNA Chips or Microarrays

46.2 Adipocyte Transcriptome
46.2.1 Influence of Caloric Restriction
46.2.2 Effect of Dietary Carbohydrate Content
46.2.3 Effect of Dietary Fat Content
46.2.4 Nature of Fat
46.2.5 Effects of Quality and Protein Content

46.3 Intestinal Transcriptome
46.3.1 Influence of Caloric Restriction
46.3.2 Effects of Carbohydrate Content of Diets
46.3.3 Effect of Dietary Fat Content
46.3.4 Effects of Quality and Protein Content
46.3.5 Environmental Conditions of Intestine

46.4 Hepatic Transcriptome
46.4.1 Influence of Fasting and Feeding
46.4.2 Influence of Caloric Restriction
46.4.3 Effects of Carbohydrate Content of Diets
46.4.4 Effect of Dietary Fat Content
46.4.5 Effects of Quality and Protein Content

46.5 Muscular Transcriptome
46.5.1 Influence of Caloric Restriction
46.5.2 Effect of Dietary Fat Content
46.5.3 Effects of Quality and Protein Content

46.6 Conclusion
Acknowledgments
References

Part IX Nutriethics

47 Nutritional Sciences at the Intersection of Omics Disciplines and Ethics: A Focus on Nutritional Doping
Nicola Luigi Bragazzi

47.1 Introduction
47.2 Nutrigenomics and Nutriproteomics
47.3 Sports Nutriproteogenomics
47.4 Nutritional and Sports Ethics
47.5 Conclusions
References
Part X Nanotechnology
623

48 Current Relevant Nanotechnologies for the Food Industry
Kelvii Wei Guo
625

48.1 Introduction
625

48.2 Nanotechnology in Food Industry
626
48.2.1 Nanoparticles (NPs)
627
 48.2.2 Nanodispersion
627
 48.2.3 Nanocapsules
628
 48.2.4 Nanocolloids
628
 48.2.5 Nanoemulsions
629
 48.2.6 Nanofibers/Tubes
629

48.3 Natural Biopolymers
630

48.4 Nanotechnology for Food Packaging
630
48.4.1 Silver Nanoparticles and Nanocomposites as Antimicrobial Food Packaging Materials
630
48.4.2 Nanolaminates/Coating
631
48.4.3 Nanosensors
631

48.5 Outstanding State-of-the-Art Issues
633
48.6 Conclusion
633

References
634

Index
637